3D Generation Survey

3D Generation Survey

综述:Advances in 3D Generation: A Survey

3D表征:Neural Representation

生成过程通常涉及用于创建3D模型和渲染2D图像的场景表示和可微分渲染算法

【1】直接监督场景表示的3D模型

【2】将场景表示渲染成图像并监督生成的2D效果图

  • Explicit scene representation(显示表征)

    • Point Clouds(点云):

      Surfels在计算机图形学中用于渲染点云(Splitting),可微分。

      • Neural point-based graphics.
      • Neural point cloud rendering via multi-plane projection.
      • Synsin: End-to-end view synthesis from a single image.
      • ......(这些方法通常将特征嵌入点云中,并将其变换到目标视图以解码颜色值,从而允许更准确和详细的场景重建)
      • Ewa-splatting
      • Learning efficient point cloud generation for dense 3d object reconstruction.
    • Meshes:

    • Multi-layer Representations:

  • Implicit Representations

    • NeRFs(广义)

      • NeRF:Representing scenes as neural radiance fields for view synthesis
      • Mip-nerf:A multiscale representation for anti-aliasing neural radiance fields
      • Instant-ngp:Instant neural graphics primitives with a multiresolution hash encoding
      • 3dgs:3d gaussian splatting for real-time radiance field rendering
    • Neural Implicit Surfaces

      • NeuS:Learning neural implicit surfaces by volume rendering for multi-view reconstruction
      • VolSDF:Volume rendering of neural implicit surfaces
  • Hybrid Representations

    • Voxel Grids

      • Instant-NGP: Instant neural graphics primitives with a multiresolution hash encoding
    • Tri-plane

      • TensoRF:Tensorial radiance fields
    • Hybrid Surface Representation

      • DMTet:Deep marching tetrahedra: a hybrid representation for high-resolution 3d shape synthesis

2D生成模型:Diffusion Models

  • Diffusion Models / Generative Artificial Intelligence

    • DDPM:Denoising diffusion probabilistic models.
    • LDMS(Latent Diffusion):High-resolution image synthesis with latent diffusion models
    • IDDPM:Improved denoising diffusion probabilistic models
    • Stable Diffusion:High-resolution image synthesis with latent diffusion models.
    • Imagen:Photorealistic text-toimage diffusion models with deep language understanding
    • Midjourney:Midjourney
    • DALL-E 3 :OpenAI
  • GANs

    • GAN:Generative adversarial nets
    • Image2StyleGAN:How to embed images into the stylegan latent space
  • VAEs

  • Autoregressive

Background

  • 3D数据稀缺
  • 评估指标(考虑多视图一致性)

3D Generation Achievement

  • 3D-GAN:Learning a probabilistic latent space of object shapes via 3d generativeadversarial modeling.
  • DeepSDF:Learning continuous signed distance functions for shape representation.
  • DMTet:Deep marching tetrahedra: a hybrid representation for high-resolution 3d shape synthesis.
  • EG3D:Efficient geometry-aware 3d generative adversarial networks
  • DreamFusion:Text-to-3d using 2d diffusion.
  • PointE:Point-e: A system for generating 3d point clouds from complex prompts.
  • Zero-1-to-3:Zero-1-to-3: Zero-shot one image to 3d object
  • Instant3D:Instant3d: Fast textto-3d with sparse-view generation and large reconstruction model.
  • AutoSDF:Transformer + voxel grid
  • EG3D:GAN + tri-plane
  • SSDNeRF:diffusion + tri-plane

3D Generation Methods

  • Feedforward Generation

    • GAN

      • point clouds:l-GAN/r-GAN,tree-GAN
      • voxel grids:3D-GAN,Z-GAN
      • meshes:MeshGAN
      • SDF:SurfGen,SDFStyleGAN
  • Optimization-Based Generation

  • Procedural Generation

  • Generative Novel View Synthesis

Optimization-Based Generation

  • Dream Field:

    • DreamFusion:
      • Make-it-3D (Image-to-3D)
      • Magic3D (Image/text-to-3D)
      • ProlificDreamer (text-to-3D)

Feedforward Generation

GANS:

  • 3D GANS
    • tree-GAN (point cloud)

VAEs

  • NeRF-VAE

Autoregressive Models

  • PolyGen

Normalizing Flows

  • PointFlow

Diffusion Models

  • Meshdiffusion (mesh)
  • Lion (point cloud)
  • Point-E (point cloud)
  • Diffusion-SDF (SDF)
  • ShapE (Radiance Field)

Procedural Generation

  • create 3D models and textures from sets of rules

Generative Novel View Synthesis

  • GAN-based:

    • PixelSynth
  • Diffusion-based:

    • Zero-1-2-3
    • Zero-1-2-3++

3D Generation Survey
https://jetthuang.top/所有/3D Generation Survey/
作者
Jett Huang
发布于
2024年8月27日
许可协议