Text-to-3D Generation

Text-to-3D Generation

思路:

diffusion基于文本生成二维图像成功的原因:可以从网络上收集到大量的图片文本对。

三维生成大模型的难点:三维数据稀缺,目前只能利用二维的生成能力提升迁移到三维

  1. 端到端,直接生成三维数据
    • 生成mesh:图卷积网络
    • 生成点云:point-E
  2. 利用diffusion,从二维升三维
    • text-image,然后利用多视角图像进行三维重建,要求diffusion对多视角一致性
    • 利用多视角diffusion的prior,然后使用分数蒸馏采样SDS损失
  • Magic3d:High-resolution text-to-3d content creation

  • Dreambooth3d: Subject-driven text-to-3d generation

  • Fantasia3d: Disentangling geometry and appearance for high-quality textto-3d content creation

  • Prolificdreamer: High-fidelity and diverse textto-3d generation with variational score distillation.

  • Dreamgaussian: Generative gaussian splatting for efficient 3d content creation

Layout

  1. Compositional 3d scene generation using locally conditioned diffusion
  2. Componerf: Text-guided multi-object compositional nerf with editable 3d scene layout.
  3. Set-the-scene: Global-local training for generating controllable nerf scenes.
  4. LOOSEControl
  5. GALA3D

Text-to-3D Generation
https://jetthuang.top/所有/Text-to-3D Generation/
作者
Jett Huang
发布于
2024年8月27日
许可协议