Text-to-3D Generation
Text-to-3D Generation
思路:
diffusion基于文本生成二维图像成功的原因:可以从网络上收集到大量的图片文本对。
三维生成大模型的难点:三维数据稀缺,目前只能利用二维的生成能力提升迁移到三维
- 端到端,直接生成三维数据
- 生成mesh:图卷积网络
- 生成点云:point-E
- 利用diffusion,从二维升三维
- text-image,然后利用多视角图像进行三维重建,要求diffusion对多视角一致性
- 利用多视角diffusion的prior,然后使用分数蒸馏采样SDS损失
Magic3d:High-resolution text-to-3d content creation
Dreambooth3d: Subject-driven text-to-3d generation
Fantasia3d: Disentangling geometry and appearance for high-quality textto-3d content creation
Prolificdreamer: High-fidelity and diverse textto-3d generation with variational score distillation.
Dreamgaussian: Generative gaussian splatting for efficient 3d content creation
Layout
- Compositional 3d scene generation using locally conditioned diffusion
- Componerf: Text-guided multi-object compositional nerf with editable 3d scene layout.
- Set-the-scene: Global-local training for generating controllable nerf scenes.
- LOOSEControl
- GALA3D
Text-to-3D Generation
https://jetthuang.top/所有/Text-to-3D Generation/